

Introduction

High temperature generally results in decreased strength and weakend performance of Iron-base materials. To avoid rapid oxidation and mechanical property losses at the elevated temperature, refractory elements are added in UP-H improving solid solution and precipitation strengthening on the basis of metallurgical theory that gives UP-H excellent high temperature wear resistance.

Composition & Properties

С	Cr	Fe	Other	Hardness (HRC)	ASTM G65 Procedure A
≥ 3.8	≥ 15	Bal.	Nb, Mo, V, W	≥ 60	≤ 0.18

* Hardfacing thickness over 6mm (Composition in wt%)

Description

Characteristic	Data		
Standard Thickness* (mm)	Base material ≥ 4mm, Hardfacing ≥ 4mm		
Standard Size* (mm)	1,200 × 2,400 1,500 × 3,000 2,200 × 3,000		
Operation Temperature (°C)	≤ 650		
Machinability	EDM, Plasma, Laser cutting Stud bolt, Countersink, Gouging		
Formability	R ≥ 150 (for 6+4, overlay inward)		
Base Plate*	Q235B (SS400, S235JR)		

UP GROUP E-mail: info@upplate.com www.upplate.com

* Customizable